Fig. 4 shows that the isotherm given by the classical theory is a fairly representation of the behaviour of the heavy gases $\mathrm{N}_{2}$ and A , and that the r : dicted differences between the quantal isotherms are in good agreement with: experimental differences between the light gases.

We wish to express our thanks to Dr. J. F. Pearse for helpful discussions the design of the apparatus and to Mr. S. J. Lake for constructing much of Our thanks are also due to Prof. T. G. Hunter for making available the labora: space in which the work was carried out.
${ }^{1}$ Hamann, Trans. Faraday Soc., 1952, 48, 303.
${ }^{2}$ Lennard-Jones and Devonshire, Proc. Roy. Soc. A, 1937, 163, 53.
${ }^{3}$ Wentorf, Buehler, Hirschfelder and Curtiss, J. Chem. Physics, 1950, 18, 1484.
${ }^{4}$ Holborn and Schultze, Ann. Physik, 1915, (4), 47, 1089.
${ }^{5}$ David, Hamann and Pearse, J. Chem. Physics, 1952, 20, 969.
${ }^{6}$ Tongue, The Design and Construction of High Pressure Plant (Chapman is Hall, Ltd., London, 1934), p. 54.
${ }^{7}$ Michels and Goudeket, Physica, 1941, 8, 347, 353.
${ }^{8}$ Johnston and White, Trans. Amer. Soc. Mech. Eng., 1950, 72, 785.
${ }^{9}$ Hainsworth and MacInnes, J. Amer. Chem. Soc., 1922, 44, 1021.
${ }^{10}$ Schiff and Steacie, Can. J. Chem., 1951, 29, 1.
${ }^{11}$ de Boer and Michels, Physica, 1938, 5, 945.
${ }^{12}$ de Boer, Thesis (University of Amsterdam, 1940). de Boer, Physica, 1948, 14, I. de Boer and Blaisse, Physica, 1948, 14, 149. de Boer and Lunbeck, Physica, 1s: 14, 520.
${ }^{13}$ Buchmann, Z. physik. Chem. A, 1933, 163, 461.
${ }^{14}$ Bartlett, Hetherington, Kvalnes and Treamearne, J. Amer. Chem. Soc., 1930, §: 1363.
${ }_{15}$ Michels, Wijker and Wijker, Physica, 1949, 15, 627.

# THE VAPOUR PRESSURE AND ORTHOBARIC DENSITY OF NITROUS OXIDE 

## By D. Cook

The Department of Chemistry, University of Manchester
Received 21st January, 1953; in final form, 27th March, 1953
The vapour pressure of nitrous oxide has been determined from $12^{\circ} \mathrm{C}$ to the cri: point, and the orthobaric densities from $20^{\circ} \mathrm{C}$ to the critical point. The apparatus C sisted of a calibrated, heavy-walled, hard-glass pressure tube containing the gas sam: confined over mercury, and thermostated with a vapour bath. Visual observation the dew points, boiling points and critical points was thus possible. Pressurcs 4. determined with a free piston gauge to 0.01 atm , and temperatures to $0.01^{\circ} \mathrm{C}$ with mercu: in-glass thermometers. A cathetometer capable of reading to 0.001 cm was used to m.d the volume measurements.

The vapour pressures obtained are substantially lower than the I.C.T. values and represented by the equation

$$
\log _{10} p(\mathrm{~atm})=4 \cdot 6258-(858 \cdot 63 / T) .
$$

The results are compared with other determinations on the vapour pressure and ort ${ }^{\text {t }}$ baric densities of $\mathrm{N}_{2} \mathrm{O}$.

In the course of measuring the vapour pressure and orthobaric densitics mixtures of $\mathrm{CO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$, these properties of pure $\mathrm{N}_{2} \mathrm{O}$ were determined. I vapour pressures obtained were consistently lower than the I.C.T. values, ${ }^{1}$ wh the orthobaric densities showed only slight differences. The I.C.T. vap
coures at high temper (7) 15 C to the critic: attions were made by (m) $100^{\circ} \mathrm{C}$ to -3 antematic deviations fr flaces and support the I
apparatus.-(a) High . meral feature of which anfined over mercury. $\mathrm{CO}_{2}$. Observations w sonding to the liquid ar 3 and $28^{\circ} \mathrm{C}$. This leng -miicus was correlated U.hels, Blaisse and Mict : wift iron stirrer actuated

a steel compressor bla f also filled with mercu wis connected to a Bt
th oil. H was a rou
14 of mercury in the
heads in the appara the the piston revolve $\mathrm{CCO}_{2}$ at the ise poir The pressure tube A -1s wrapped with alumi cthyl alcohol and wat
" the top of the vapou :ttom, which was heat - boiling a pure liquid -nstant, and can be caT the boiling liquid. : mperatures from $34 \cdot 6$ aired, being achicve - 3 used to produce ter - the system to smoo: $\checkmark$ type used by Wad

